public class AODEsr
extends weka.classifiers.AbstractClassifier
implements weka.core.OptionHandler, weka.core.WeightedInstancesHandler, weka.classifiers.UpdateableClassifier, weka.core.TechnicalInformationHandler
BibTeX:
@inproceedings{Zheng2006, author = {Fei Zheng and Geoffrey I. Webb}, booktitle = {Proceedings of the Twenty-third International Conference on Machine Learning (ICML 2006)}, pages = {1113-1120}, publisher = {ACM Press}, title = {Efficient Lazy Elimination for Averaged-One Dependence Estimators}, year = {2006}, ISBN = {1-59593-383-2} }
Valid options are:
-D Output debugging information
-C Impose a critcal value for specialization-generalization relationship (default is 50)
-F Impose a frequency limit for superParents (default is 1)
-L Using Laplace estimation (default is m-esimation (m=1))
-M Weight value for m-estimation (default is 1.0)
Constructor and Description |
---|
AODEsr() |
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(weka.core.Instances instances)
Generates the classifier.
|
java.lang.String |
criticalValueTipText()
Returns the tip text for this property
|
double[] |
distributionForInstance(weka.core.Instance instance)
Calculates the class membership probabilities for the given test
instance.
|
java.lang.String |
frequencyLimitTipText()
Returns the tip text for this property
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
int |
getCriticalValue()
Gets the critical value.
|
int |
getFrequencyLimit()
Gets the frequency limit.
|
double |
getMestWeight()
Gets the weight used in m-estimate
|
java.lang.String[] |
getOptions()
Gets the current settings of the classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
weka.core.TechnicalInformation |
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing
detailed information about the technical background of this class,
e.g., paper reference or book this class is based on.
|
boolean |
getUseLaplace()
Gets if laplace correction is being used.
|
java.lang.String |
globalInfo()
Returns a string describing this classifier
|
double |
LaplaceEstimate(double frequency,
double total,
double numValues)
Returns the probability estimate, using laplace correction
|
java.util.Enumeration |
listOptions()
Returns an enumeration describing the available options
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
double |
MEstimate(double frequency,
double total,
double numValues)
Returns the probability estimate, using m-estimate
|
java.lang.String |
mestWeightTipText()
Returns the tip text for this property
|
double |
NBconditionalProb(weka.core.Instance instance,
int classVal)
Calculates the probability of the specified class for the given test
instance, using naive Bayes.
|
void |
setCriticalValue(int c)
Sets the critical value
|
void |
setFrequencyLimit(int f)
Sets the frequency limit
|
void |
setMestWeight(double w)
Sets the weight for m-estimate
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setUseLaplace(boolean value)
Sets if laplace correction is to be used.
|
java.lang.String |
toString()
Returns a description of the classifier.
|
void |
updateClassifier(weka.core.Instance instance)
Updates the classifier with the given instance.
|
java.lang.String |
useLaplaceTipText()
Returns the tip text for this property
|
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
public java.lang.String globalInfo()
public weka.core.TechnicalInformation getTechnicalInformation()
getTechnicalInformation
in interface weka.core.TechnicalInformationHandler
public weka.core.Capabilities getCapabilities()
getCapabilities
in interface weka.classifiers.Classifier
getCapabilities
in interface weka.core.CapabilitiesHandler
getCapabilities
in class weka.classifiers.AbstractClassifier
public void buildClassifier(weka.core.Instances instances) throws java.lang.Exception
buildClassifier
in interface weka.classifiers.Classifier
instances
- set of instances serving as training datajava.lang.Exception
- if the classifier has not been generated
successfullypublic void updateClassifier(weka.core.Instance instance)
updateClassifier
in interface weka.classifiers.UpdateableClassifier
instance
- the new training instance to include in the modeljava.lang.Exception
- if the instance could not be incorporated in
the model.public double[] distributionForInstance(weka.core.Instance instance) throws java.lang.Exception
distributionForInstance
in interface weka.classifiers.Classifier
distributionForInstance
in class weka.classifiers.AbstractClassifier
instance
- the instance to be classifiedjava.lang.Exception
- if there is a problem generating the predictionpublic double NBconditionalProb(weka.core.Instance instance, int classVal) throws java.lang.Exception
instance
- the instance to be classifiedclassVal
- the class for which to calculate the probabilityjava.lang.Exception
- if there is a problem generating the predictionpublic double MEstimate(double frequency, double total, double numValues)
frequency
- frequency of value of interesttotal
- count of all valuesnumValues
- number of different valuespublic double LaplaceEstimate(double frequency, double total, double numValues)
frequency
- frequency of value of interesttotal
- count of all valuesnumValues
- number of different valuespublic java.util.Enumeration listOptions()
listOptions
in interface weka.core.OptionHandler
listOptions
in class weka.classifiers.AbstractClassifier
public void setOptions(java.lang.String[] options) throws java.lang.Exception
Valid options are:
-D Output debugging information
-C Impose a critcal value for specialization-generalization relationship (default is 50)
-F Impose a frequency limit for superParents (default is 1)
-L Using Laplace estimation (default is m-esimation (m=1))
-M Weight value for m-estimation (default is 1.0)
setOptions
in interface weka.core.OptionHandler
setOptions
in class weka.classifiers.AbstractClassifier
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface weka.core.OptionHandler
getOptions
in class weka.classifiers.AbstractClassifier
public java.lang.String mestWeightTipText()
public void setMestWeight(double w)
w
- the weightpublic double getMestWeight()
public java.lang.String useLaplaceTipText()
public boolean getUseLaplace()
public void setUseLaplace(boolean value)
value
- Value to assign to m_Laplace.public java.lang.String frequencyLimitTipText()
public void setFrequencyLimit(int f)
f
- the frequency limitpublic int getFrequencyLimit()
public java.lang.String criticalValueTipText()
public void setCriticalValue(int c)
c
- the critical valuepublic int getCriticalValue()
public java.lang.String toString()
toString
in class java.lang.Object
public java.lang.String getRevision()
getRevision
in interface weka.core.RevisionHandler
getRevision
in class weka.classifiers.AbstractClassifier
public static void main(java.lang.String[] argv)
argv
- the options